Surface Tensions and Relative Adsorptions in Hydrogen-Bonded Systems

Dimitrios Papaioannou and Constantinos G. Panayiotou*

Department of Chemical Engineering, University of Thessaloniki, 540 06 Thessaloniki, Greece

Liquid-air interfacial tensions of representative alkanol + alkane and alkanol + amine systems measured by the differential capillary rise technique at 298.15 K are reported. The binary systems studied are hexane + ethanol and + 1-propanol, heptane + ethanol and + 1-propanol, and *n*-butylamine + methanol, + ethanol, and + 1-butanol. The excess surface tensions in the alkanol + alkane systems are negative, while in the alkanol + amine systems they are positive. The surface tensions themselves for the alkanol + amine systems, when plotted against mole fraction, exhibit a maximum. The two classes of systems exhibit characteristic patterns in their relative adsorptions. The results are discussed in relation to the bulk properties of these hydrogen-bonded systems.

Introduction

Over the last few years we have conducted a systematic study of the thermophysical properties of hydrogen-bonded systems. With the exception of a recent work (1), our focus so far has been on bulk properties. In the present work we extend this systematic study to the surface tension of two representative classes of hydrogen-bonded systems: 1-alkanol + *n*-alkane and 1-alkanol + *n*-alkylamine systems. Alkanols, which are the common components in these systems, selfassociate strongly in both the pure state and in a mixture. Alkanes are inert "solvents" or "diluents", reducing the degree of hydrogen bonding in the mixture. On the other hand, *n*-alkylamines self-associate weakly but cross-associate strongly with 1-alkanols (2).

The properties of alkanol + alkane and alkanol + amine mixtures deviate remarkably from ideal solution behavior due to the strong specific intermolecular interactions. The OH-NH interaction, in particular, is one of the strongest hydrogen-bonding interactions, resulting in relatively large negative enthalpies of mixing in alkanol + amine mixtures (2). In contrast, the enthalpies of mixing in alkanol + alkane mixtures are positive. It is expected that the interfacial properties of these systems will be strongly influenced by their propensity to form hydrogen-bonding association complexes.

In this work we report surface tensions of seven binary mixtures from these two classes of systems. In parallel we have studied a number of excess quantities of these mixtures including their enthalpies and volumes of mixing (3). Thus, we are able to estimate their nonideal behavior and convert the surface tension results to relative adsorptions.

Materials and Methods

All pure liquids used in this work were pro-analysis grade from Merck. The reported purities, verified by GLC, are the following: methanol, >99.8%; ethanol, >99.8%; 1-propanol, >99.5%; 1-butanol, >99%; *n*-hexane, >99.5%; *n*-heptane, >99%; *n*-propylamine, >99%; *n*-butylamine, >99%. No further purification was attempted.

Pure component properties are reported in Table 1. The mixtures were prepared by mass from the pure components with a precision of ± 0.0001 g. Precautions were taken to minimize evaporation losses during the preparation of the

		ρ/(kg·m ⁻³)		$\sigma/(mN \cdot m^{-1})$	
liquid	t/°C	measd	lit.	measd	lit.
methanol	25	786.66	786.64 (8)	22.12	22.10 (9)
ethanol	25	785.19	785.12 (10)	21.76	21.68 (6)
propanol	25	799.63	799.69 (10)	23.15	23.18 (6)
butanol	25	805.92	805.86 (10)	24.20	24.18 (9)
hexane	25	654.90	654.80 (11)	18.42ª	18.41° (6)
heptane	25	679.42	679.57 (10)	19.60	19.70 (12)
butylamine	25	732.20	733.10 (13)	23.12	19.7 ^b (14)

^a At 20 °C. ^b At 41 °C.

mixtures and the subsequent determination of densities and surface tensions.

The densities, ρ , were measured with a vibrating tube densitometer, model DMA 60/602 of Anton Paar. Bidistilled water and air were used as calibrating substances. The temperature in the measuring cell was regulated to 25.00 ± 0.01 °C through a Haake ultrathermostat and measured by a precision digital thermometer, model S1220 of Systemteknik. The estimated error in the density is $\pm 5 \times 10^{-6}$ g·cm⁻³.

The surface tensions, σ , were measured by the differential capillary rise technique (4–6) as described previously (7). The precision glass capillaries used had internal radii of $r_1 = 0.1475$ mm and $r_2 = 0.3851$ mm. The differential rise, Δh , in the capillaries, was measured by a PTI cathetometer with an accuracy of ± 0.01 mm. The estimated error in surface tension is ± 0.05 mN·m⁻¹ in absolute values.

The enthalpies of mixing $H^{\rm E}$ were measured with a Hart Scientific flow calorimeter, model 7501, with a procedure fully described in ref 3. A detailed presentation of the experimental $H^{\rm E}$ results for all studied systems will be given in a forthcoming publication.

Results

The results for the surface tension of the binary liquid mixtures over the whole concentration range are reported in Tables 2 and 3. The reported values are the average of at least three independent measurements. For alkanol + amines the surface tension at intermediate compositions exceeds the surface tension of both pure components. The excess surface

^{*} To whom correspondence should be addressed.

<i>x</i> ₁	$\sigma/(mN \cdot m^{-1})$	<i>x</i> ₁	$\sigma/(mN\cdot m^{-1})$	<i>x</i> ₁	$\sigma/(mN\cdot m^{-1})$	<i>x</i> ₁	$\sigma/(mN \cdot m^{-1})$
Hexane (1)	+ Ethanol (2)	Hexane (1)	+ Propanol (2)	Heptane (1)) + Ethanol (2)	Heptane (1)	+ Propanol (2)
0.0000	21.76	0.0000	23.15	0.0000	21.76	0.0000	23.15
0.0491	20.98	0.0235	22.83	0.0251	21.47	0.0497	22.47
0.0996	20.37	0.0501	22.40	0.0503	21.13	0.0976	21.92
0.1114	20.24	0.0966	21.82	0.0761	20.89	0.1964	21.16
0.1991	19.43	0.1955	20.68	0.1006	20.68	0.2981	20.59
0.2489	19.08	0.2964	19.76	0.1270	20.52	0.3974	20.27
0.2893	18.79	0.3446	19.40	0.1499	20.40	0.4952	20.06
0.3566	18.53	0.4093	19.06	0.1757	20.25	0.5955	19.83
0.4004	18.34	0.4471	18.87	0.2023	20.18	0.6971	19.75
0.4486	18.23	0.4971	18.61	0.2979	19.96	0.7973	19.66
0.5379	18.08	0.5942	18.33	0.3517	19.83	0.8969	19.59
0.6057	18.03	0.6522	18.14	0.4030	19.77	0.9503	19.58
0.6324	17.96	0.6951	18.11	0.5551	19.66	0.9750	19.59
0.6939	17.92	0.7490	18.00	0.5998	19.63	1.0000	19.60
0.8007	17.87	0.7990	17.94	0.6297	19.62		
0.8513	17.83	0.8481	17.89	0.6515	19.60		
0.9000	17.83	0.9008	17.83	0.6978	19.60		
0.9242	17.80	0.9491	17.80	0.7509	19.58		
0.9502	17.79	0.9846	17.80	0.8008	19.59		
1.0000	17.81	1.0000	17.81	0.8501	19.59		
		0.9412		0.9412	19.57		
				1.0000	19.60		

Table 2. Surface Tensions σ for Alkanes + Alkanols

Table 3. Surface Tensions σ for 1-Alkanols + *n*-Alkylamines

x_1	$\sigma/(mN \cdot m^{-1})$	x_1	$\sigma/(mN \cdot m^{-1})$	<i>x</i> ₁	$\sigma/(mN\cdot m^{-1})$
Methanol (1) + Butylamine (2)		Ethanol (1) + Butylamine (2)		Butanol (1) + Butylamine (2)	
0.0000	23.12	0.0000	23.12	0.0000	23.12
0.0915	23.25	0.1007	23.20	0.0492	23.27
0.2007	23.41	0.1980	23.27	0.1004	23.42
0.3010	23.52	0.2492	23.30	0.2001	23.66
0.4000	23.71	0.3994	23.33	0.2978	23.87
0.4997	23.79	0.5003	23.32	0.3960	24.02
0.5999	23.85	0.6027	23.12	0.4988	24.19
0.6504	23.80	0.7111	22.86	0.5821	24.25
0.7018	23.71	0.8488	22.41	0.6999	24.31
0.7773	23.38	0.9006	22.23	0.7977	24.30
0.8523	23.01	1.0000	21.80	0.8976	24.26
0.9010	22.70			0.9472	24.24
0.9512	22.38			1.0000	24.20
1.0000	22.12				

Figure 1. Experimental excess surface tension for the system hexane (1) + ethanol (2) at 298.15 K.

tension, σ^{E} , of the mixture is defined as

$$\sigma^{\mathbf{E}} = \sigma - x_1 \sigma_1 - x_2 \sigma_2 \tag{1}$$

where x_i and σ_i are the mole fraction and the surface tension of pure liquid *i* while σ is the surface tension of the mixture

Table 4. Coefficients of Eq 2 and Percent Absolute Average Deviation (% AAD)

	hexane (1) + ethanol (2)	hexane (1) + propanol (2)	heptane (1) + ethanol (2)	heptane (1) + propanol (2)
<i>b</i> ₀	-6.5913	-5.4116	-3.9111	-5.4116
b_1	4.4769	3.1813	2.8148	3.1813
b_2	-1.7188	-1.8672	-3.1122	-1.8672
b_3	-0.4089	0.7133	2.3006	0.7133
b5		-0.8064		
% AAD	1.7053	1.2656	2.8378	1.2656

of composition x_i . Although there is no justification for the ideal surface tension being equal to $x_1\sigma_1 + x_2\sigma_2$, the surface tension deviation σ^E of eq 1 is customarily referred to as excess surface tensions. In Figures 1-4 are shown the excess surface tensions for the alkanol + alkane mixtures while in Figures 5-7 are shown the corresponding quantities for the alkanol + amine mixtures. These excess quantities are negative over the mole fraction range for the first class of systems but positive for the second class. The curves in these figures were calculated with a Redlich-Kister-Scatchard-type equation:

$$\sigma^{\rm E}/({\rm mN}\cdot{\rm m}^{-1}) = x_1 x_2 \sum_{j=0}^n b_j (1-2x_1)^j$$
(2)

The coefficients b_j along with the average absolute percent deviation are reported in Tables 4 and 5.

Also shown are the enthalpies of mixing of two of the systems. Figure 8 gives H^{E} for ethanol (1) + heptane (2)

Figure 2. Experimental excess surface tension for the system hexane (1) + propanol (2) at 298.15 K.

Figure 3. Experimental excess surface tension for the system heptane (1) + ethanol (2) at 298.15 K.

 Table 5.
 Coefficients of Eq 2 and Percent Absolute

 Average Deviation (% AAD)

	methanol (1) + butylamine (2)	ethanol (1) + butylamine (2)	butanol (1) + butylamine (2)
<i>b</i> ₀	4.7707	3.3624	2.0659
b_1	3.8708	0.5594	0.1515
b_2	0.1353	-1.9311	-0.0702
b_3	-3.4425	0.0320	-0.4658
b4	-1.9250	1.8093	0.0505
% AAD	1.4520	1.4840	1.3050

while Figure 9 gives H^E for ethanol (1) + butylamine (2) at 298.15 K. The two classes of systems have H^E values differing not only in their absolute values but also in their sign.

Similar patterns are observed for the volumes of mixing, V^{E} . The latter quantity is defined by

$$V^{\rm E} = V - x_1 V_1 - x_2 V_2 = x_1 M_1 (1/\rho - 1/\rho_1) + x_2 M_2 (1/\rho - 1/\rho_2)$$
(3)

where V_j and M_j are the molar volume and molar mass, respectively, of component j. V^{E} values calculated from the

Figure 4. Experimental excess surface tension for the system heptane (1) + propanol (2) at 298.15 K.

Figure 5. Experimental excess surface tension for the system methanol (1) + butylamine (2) at 298.15 K.

 Table 6.
 Coefficients of Eq 4 and Percent Absolute

 Average Deviation (% AAD)

	hexane (1) + ethanol (2)	hexane (1) + propanol (2)	heptane (1) + ethanol (2)	heptane (1) + propanol (2)
<i>v</i> ₀	1.6059	0.6006	1.8512	1.1631
v_1	0.2272	0.7181	0.0675	0.8172
v_2	0.3547	0.7392	0.6939	0.2595
v_3	1.6345	0.7413	0.5978	-0.8868
04	1.9471		0.0361	-0.1951
U5	-4.6705		-0.5687	1.7692
% AAD	1.2926	2.1696	1.1635	3.0166

density results have been fitted with a Redlich-Kister-Scatchard-type equation analogous to eq 2, namely,

$$V^{\rm E}/({\rm cm}^3 \cdot {\rm mol}^{-1}) = x_1 x_2 \sum_{j=0}^n v_j (1 - 2x_1)^j$$
 (4)

Coefficients v_j along with the standard deviation of fit are reported in Tables 6 and 7. Contrary to the case of alkanol + alkane systems, the excess volumes for alkanol + amine systems are relatively large and negative.

Figure 6. Experimental excess surface tension for the system ethanol (1) + butylamine (2) at 298.15 K.

Figure 7. Experimental excess surface tension for the system butanol (1) + butylamine (2) at 298.15 K.

Table 7.Coefficients of Eq 4 and Percent AbsoluteAverage Deviation (% AAD)

	methanol (1) + butylamine (2)	ethanol (1) + butylamine (2)	butanol (1) + butylamine (2)
<i>U</i> 0	-6.7038	-5.1413	-4.7850
<i>U</i> 1	-0.8393	-0.9076	-0.5174
U2	1.2197	-0.2181	0.2316
U3	0.4995	1.8230	1.9760
U4	-0.3936	-0.2553	-0.3937
% AAD	0.3599	1.3338	1.9478

In a binary mixture, the relative adsorption of component 2 at the liquid-air interface is defined by

$$\Gamma_{2,1} = -[d\sigma/d\mu_2]_T = -[(d\sigma/dx_2)(dx_2/d\mu_2)]_T$$
(5)

where μ_2 is the chemical potential of component 2 in the mixture. From eq 5, the calculation of the relative adsorptions requires a knowledge of the chemical potential in the mixture as a function of composition. In refs 2 and 3 we have presented an equation-of-state theory of hydrogen-bonded fluids and correlated the thermodynamic quantities of mixing for systems belonging to the two classes of mixtures studied here. This theory provides the required expression for the chemical

Figure 8. Experimental heats of mixing for the system heptane (1) + ethanol (2) at 298.15 K.

Figure 9. Experimental heats of mixing for the system ethanol (1) + butylamine (2) at 298.15 K.

 Table 8. Physical Interaction Parameters of the Lattice

 Fluid Associated Solutions (LFAS) Model (2)

system	<u>ر</u> آرک	ξ12	<i>q</i> ₁₂
methanol (1) + butylamine (2)	1.040	0.998	0.250
(1) + butylamine (2)	0.954	0.992	0.250
butanol(1) + butylamine(2)	0.936	0.992	0.250
hexane (1) + ethanol (2)	1.018	0.998	-0.120
hexane (1) + propanol (2)	1.020	0.992	-0.145
heptane (1) + ethanol (2)	1.013	0.993	-0.145
heptane (1) + propanol (2)	1.016	0.994	-0.120

potential for the mixtures of our interest (3). The pure component parameters are given in ref 2. The hydrogenbonding parameters for the OH-NH interaction are $E^{\circ} =$ -39.3 kJ·mol⁻¹, $S^{\circ} = -62 \text{ J·K}^{-1} \cdot \text{mol}^{-1}$, and $V^{\circ} = -7.0 \text{ cm}^3 \cdot \text{mol}^{-1}$. The physical interaction parameters of the theory are reported in Table 8.

In Figures 10-12 are shown the relative adsorptions at the liquid-air interface of our mixtures. For completeness we have included in Figure 12 the curve for the mixture of 1-propanol with the amine which has been reported previously (1). As observed in Figures 10-12 the variation of the relative adsorptions with composition follows distinctively different

Figure 10. Relative adsorption of alkanol at the liquid-air interface in the systems (a) hexane (1) + ethanol (2) and (b) hexane (1) + propanol (2) at 298.15 K.

Figure 11. Relative adsorption of alkanol at the liquid-air interface in the systems (a) heptane (1) + ethanol (2) and (b) heptane (1) + propanol (2) at 298.15 K.

patterns in the two classes of systems. In alkanol + alkane mixtures the relative adsorption of alkanol is negative with a pronounced minimum in the alkanol-rich region. In the alkanol + amine systems the relative adsorption of alkanol is both positive and negative with a pronounced maximum in the alkanol-rich region and a shallow minimum in the amine-rich region.

Discussion

The alkanol + alkane mixtures have in general the following properties in common: positive enthalpies and volumes of mixing, positive deviations from Raoult's law, and negative excess surface tensions. The alkanol + amine mixtures have in common the following properties: relatively large negative enthalpies and volumes of mixing, negative deviations from Raoult's law, and positive excess surface tensions. In Table 9 are shown the extreme values for the excess enthalpy, $H^{\rm E}$, the excess volume, $V^{\rm E}$, and the excess surface tension, $\sigma^{\rm E}$, in our systems at 298.15 K. For completeness in the table are included results for the mixtures of propanol with propylamine

Figure 12. Relative adsorption of alkanol at the liquid-air interface in the systems (a) methanol (1), (b) ethanol (1), (c) propanol (1), and (d) butanol (1) with butylamine (2) at 298.15 K.

Table 9. Extreme Values for the Excess Properties

	$H^{\mathbf{E}}$	$V^{\mathbf{E}}$	$\sigma^{\mathbf{E}}$
system	(J·mol ⁻¹)	$(cm^{3}·mol^{-1})$	$(mN \cdot m^{-1})$
methanol (1) + butylamine (2)	-3813.9	-1.676	1.33
ethanol (1) + butylamine (2)	-2914.0	-1.288	0.87
butanol(1) + butylamine(2)	-2705.3	-1.201	0.53
hexane (1) + ethanol (2)	603.7	0.406	-1.84
hexane (1) + propanol (2)	585.8	0.226	-1.91
heptane (1) + ethanol (2)	619.5	0.463	-1.17
heptane (1) + propanol (2)	646.3	0.323	-1.50

and butylamine which have been studied earlier (1). The distinct differences in these results as well as in the calculated relative adsorptions shown in Figures 10-12 are the outcomes of the distinctively different types of intermolecular interactions in the two classes of systems.

On the molecular level, both classes of systems interact primarily through hydrogen bonding. The hydrogen-bonding interaction energies, E°, for the OH-OH, NH-NH, and OH-NH interactions are -25.1, -13.2, and -39.3 kJ·mol⁻¹, respectively (2). As a consequence, in the alkanol + alkane mixtures the association complexes formed are "homopolymers" of selfassociated alkanols, or [alkanol], chains, while in the alkanol + amine mixtures the association complexes are primarily "block copolymers" of the type $[alkanol]_n$ - $[amine]_m$ where the amine block is essentially monomeric (2). Thus, the alkanol prefers to interact with alkanol in alkanol + alkane systems, but in the case of alkanol + amine systems both the alkanol and the amine prefer to interact with each other rather than with themselves. On the basis of these, one could explain the observed patterns of the relative adsorptions in our systems. Our discussion could be based, equally well, on the surface tension results reported in Tables 2 and 3. The different features of the two classes of systems, however, are more pronounced in Figures 10-12 for the relative adsorptions.

For alkanol + alkane mixtures there are two synergistic factors which force the alkanol to preferentially avoid the interface: the lower surface tension of the alkane and the fact that the hydrogen-bonding interaction can be accomplished more efficiently in the bulk liquid phase rather than in the interface. The role of n-alkane in the alkanolrich region is essentially the breaking of the "structure" of the hydrogen-bonded alkanol chains. This is a highly endothermic process as one can verify from the positive enthalpy of mixing. This explains the tendency to keep the interfacial region rich in alkane rather than in alkanol especially in the alkanol-rich region.

Due to the strength of the OH-NH interaction, in the case of alkanol + amine systems, both compounds tend to prefer the bulk liquid phase rather than the interface where they can accomplish this hydrogen bond more efficiently. Thus, in both diluted regions of the composition, the less abundant component will tend to prefer the bulk, giving rise to s-shaped curves of preferential adsorptions. This is particularly noticeable in the alkanol-rich region (Figure 12). One should contrast Figure 12 with Figures 10 and 11 where the inert alkane in the alkanol-rich region exhibits a strong preference for the interface while the cross-associated amine in the corresponding region in Figure 12 strongly prefers the bulk. This tendency, however, will be moderated by the tendency of the component with the lower surface tension to be preferentially adsorbed at the interface. It is the interplay of these factors which may explain in qualitative terms the behavior observed in Figures 10-12.

Literature Cited

 Papaioannou, D.; Magopoulou, A.; Talilidou, M.; Panayiotou, C. J. Colloid Interface Sci. 1993, 156, 52.

- (2) Panayiotou, C. J. Solution Chem. 1991, 20, 97.
- Papaioannou, D. Ph.D. Dissertation, University of Thessaloniki, 1993.
- (4) Soares, V. A. M.; de Almeida, J. V. S.; McLure, I. A.; Higgins, R. A. Fluid Phase Equilib. 1986, 32, 9.
- (5) Adamson, A. W. Physical Chemistry of Surfaces; Interscience: New York, 1967.
- (6) Strey, R.; Schmeling, T. Ber. Bunsen-Ges. Phys. Chem. 1983, 87, 324.
- (7) Papaioannou, D.; Panayiotou, C. J. Colloid Interface Sci. 1989, 130, 432.
- (8) Cheong, W. J.; Carr, P. W. J. Liquid Chromatogr. 1987, 10, 561.
- (9) Benson, G. C.; Lam, V. T. J. Colloid Interface Sci. 1972, 2, 38.
- (10) Benson, G. C. Int. Data Ser. Sel. Data Mixtures 1986, 4, 254.
- (11) Awwad, A. W.; Salman, M. A. J. Petrol. Res. 1987, 6, 117.
- (12) McLure, I. A.; Sipowska, J. T.; Pegg, I. L. J. Chem. Thermodyn. 1982, 14, 733.
- (13) Letcher, T. M.; Bayles, J. W. J. Chem. Eng. Data 1971, 16, 266.
- (14) Weast, R. C., Astle, M. J., Eds. Handbook of Chemistry and Physics, 60th ed.; CRC Press: Boca Raton, FL, 1980.

Received for review August 13, 1993. Revised February 15, 1994. Accepted March 17, 1994.●

* Abstract published in Advance ACS Abstracts, April 15, 1994.